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Simple absorbing-state transition

Olivier Deloubrière and Fre´déric van Wijland
Laboratoire de Physique The´orique, Universite´ de Paris-Sud, 91405 Orsay cedex, France

~Received 27 July 2001; published 18 March 2002!

We study a simple reaction-diffusion process that exhibits a phase transition to an absorbing phase in its
steady state. We characterize the universal properties of the transition by computing the associated critical
exponents. We suggest that the exclusion constraint between particles may change the universality class of the
transition even though the density is asymptotically low at the transition. This is suprising as no segregation or
jamming phenomena are in play since we are dealing with a single species diffusing without drift.
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I. MOTIVATIONS

Absorbing-state transitions in nonequilibrium stea
states occur when a system evolving in time gets trappe
a state that it cannot escape from@1#. In many examples
absorbing states are completely inactive configurations
which all microscopic degrees of freedom remain const
throughout time. Such absorbing states cannot be enc
tered in equilibrium systems. On the experimental side, tr
sitions to an absorbing state were first found in chem
reactions~the Schlo¨gl autocatalytic reaction!. From the the-
oretical standpoint, they are natural nonequilibrium gener
zations of the phase transitions between Gibbs states fo
in equilibrium critical phenomena. The paradigmatic e
ample of such a transition is embodied by the so-called
rected percolation~DP! universality class. The latter ha
been invoked to describe surface roughening, fluid flows
porous media, cellular automata@2#, epidemic spreading in
population dynamics models, avalanches in some s
organized sand-pile models@3#, and a host of reaction
diffusion processes. It remains the focus of intense exp
mental interest@4# because, up to this day, there has been
experimental confirmation of the critical exponents found
numerical simulations of lattice models. Of less general
evance but of equal theoretical importance, we mention
branching and annihilating random walk with an even nu
ber of offsprings~BARWE! whose universal properties wer
recently elucidated by Cardy and Ta¨uber@5#. Recently, Rossi
et al. @6# unravelled another universality class in performi
an extensive exploration of stochastic fixed-energy sand-
models~FES! and of related stochastic processes. In the
lowing, we will always adopt the reaction-diffusion proce
vocabulary; the microscopic degrees of freedom are lo
particle numbers. In that language, DP is characterized by
two reactions A→A1A, A1A→B with diffusion,
BARWE by A→A1A1A, A1A→B with diffusion, and
an example of a system in the FES class is one in which p
of particles can perform independent nearest-neighbor ju
~a single particle on a site remains at rest; the order par
eter is the number of pairs of particles sitting on the sa
site!. We emphasize that almost no exact result is known
those systems from an analytic viewpoint@7#. This makes
simple models particularly welcome and the one we sh
introduce in this paper already shares most of the difficul
of directed percolation.
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There are a handful of microscopic ingredients that
well known to change the universality class of a transitio
often inspired by our knowledge of equilibrium critical ph
nomena. Noise with long-range correlations or long-ran
jumps ~of a Lévy flight type!, boundary effects@8#, or
quenched disorder are three such ingredients. Another in
dient that is specific to nonequilibrium steady states is
number of absorbing states the system can fall into. I
unique in the DP case. There are two in the BARWE ca
the parity of the total number of particles being conserv
throughout time, depending on the initial number of p
ticles, the absorbing state will have either one or zero p
ticle. In the FES-related cases, where systems posses
additional conservation law, there is an infinite number
absorbing states that the system can freeze into. We refe
reader to the recent review of Hinrichsen@9#.

In the present paper, because the DP class is the m
prominent of all by far, we focus on an extremely simplifie
version of a DP-like process on which we wish to test t
importance of using mutually excluding particles~or fermi-
onic! versus nonexcluding~or bosonic! ones on the universa
properties of the system. Analytic progress will be made p
sible due to the simplicity of our system. There is an incre
ing body of evidence that the hardcore constraint m
change critical properties@10#. This has stimulated us to loo
at a model simple enough for analytic statements to be m

We have organized our work as follows. in Sec. II, w
give a precise description of the microscopic rules of o
model and provide further motivations for introducing
Section III is dedicated to a renormalization group analy
of the critical properties of the process. This includes a d
vation of the renormalized equation of state from which
can extract the order parameter without resorting to a sca
hypothesis. We devote Sec. IV to giving arguments in fa
of a difference between bosons and fermions. Finally,
present in an Appendix a formulation of our reactio
diffusion process in terms of a zero-dimensional process w
long-term memory~which allows an alternative derivation o
the results presented in Sec. III!.

II. MODEL AND PHASE DIAGRAM

A. Fermions versus bosons

We consider a single species of particles whose mem
are generically denoted byA. We immediately make the dif-
©2002 The American Physical Society04-1
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OLIVIER DELOUBRIÈRE AND FRÉDÉRIC VAN WIJLAND PHYSICAL REVIEW E 65 046104
ference between mutually excluding particles that evolve
specting the hardcore constraint. Such particles will a
sively be christenedfermionic particles. We will also need
so-calledbosonicparticles, for which there is no hardcor
constraint and that do not exclude each other. In the for
case, local particle number are restricted to 0 and 1, w
they may take any integer value from 0 to` in the latter. The
microscopic rules depend slightly on whether we choose
mionic or bosonic particles.

Particles are initially randomly and independently distr
uted on the sites of a one-dimensional lattice~of unit spac-
ing! with an initial average densityr0. Here are the micro-
scopic rules of our reaction-diffusion process.

~1! Diffusion. Particles perform a simple isotropic diffu
sive motion with diffusion constantD. If we choose the fer-
mionic formulation, jumps on nearest-neighbor sites c
only occur if the target site is empty, else the motion
rejected~but time keeps elapsing!.

~2! Branching with one offspring. A particle that sits at the
origin of the lattice produces an offspring betweent and t
1dt with probability ldt. In the bosonic formulation, the
offspring is placed at the origin, while in the fermionic fo
mulation, the offspring is placed randomly on one of the t
nearest-neighbor sites, provided the target site is empty~else
nothing happens!.

~3! Annihilation. In the bosonic formulation, two particle
sitting at the origin annihilate with probabilitykdt betweent
andt1dt. Within the fermionic description, a pair of neare
neighbor particles one of which sits at the origin annihila
with probability kdt betweent and t1dt.

No reaction occurs away from the origin of the lattic
The above rules, supplemented with the initial condition,
fine a Markov process for the set of local occupation nu
bersn[$ni%, with ni50,1 in the fermionic formulation, and
ni50, . . . ,̀ in the bosonic formulation. This constitutes th
reaction-diffusion process that we are now going to stud

B. Phase diagram within a mean-field approach

Our mean-field approach does not distinguish betw
fermions and bosons. We denote byc(x,t) the local density
of particles at sitex. We write a reaction-diffusion equatio
for c(x,t),

] tc~x,t !5D]x
2c1ld~x!c2kd~x!c2, ~1!

in which one easily recognizes the usual diffusion and re
tion terms. Since the reaction rates take nonzero values
on the subspacex50, we have introduced reaction term
localized atx50. The above equation is equivalent to

] tc2D]x
2c50, 2D]xc~01,t !1lc~0,t !2kc2~0,t !50,

~2!

with c continuous and even in the coordinatex. Hence we
are dealing with a diffusion equation with nonlinear boun
ary conditions. It is straightforward to see that, if there exi
a steady-state profileC(x)5c(x,t→`), one has

]x
2C~x!50, ~3!
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hence, sinceC must be even it takes the formC(x)5Auxu
1B (A,B constants!. The existence of a thermodynam
limit imposesA50, hence a steady state is necessarily
mogeneous in space. We now return to the boundary co
tion at x50 from which we deduce

C~x!5
l

k
. ~4!

We identify the order parameter exponent defined byC
;(l2lc)

b as b51 and lc50 within the mean-field ap-
proximation.

In the particular casel50 the density at the origin
decays as 1/At. For l.0, the system relaxes exponential
to its steady state with a relaxation timeTrelax;l2nz, z52,
n51.

The phase diagram is that of directed percolation: forl
.0 there is an active phase that contaminates the wh
space, while forl50 the system falls into an absorbin
state. Of course, the universality class of the phase trans
is different from the DP one.

As a final remark we note that there exist two ways
continue our problem to higher space dimensions. The
one—for which we shall present explicit calculations
consists in considering free diffusion in the who
d-dimensional space but reactions confined to the origin.
alternative continuation consists in allowing reactions to ta
place on a (d21)-dimensional hyperplane. We shall call th
former formulation the isotropic model, while the latter is th
anisotropic one.

C. Motivations

In this paragraph, we would like to give the motivation
that have led to the definition of our toy-model. As usual
statistical mechanics, the greatest task is to assess the e
of fluctuations and correlations between degrees of freed
In many systems their importance is seen to increase as s
dimension is decreased. On the other hand, one has the
ition that, if there exists an upper critical dimension in o
system, it will be lower than that of directed percolatio
~branching and annihilation takes place anywhere in spa
along with diffusion!, since we have reduced the sources
reaction noise to a minimum level.

At any finite time, the system is strongly inhomogenou
with the density ana priori complicated scaling function o
all dimensionless variables built with the parameters (r0 ,
l2lc , x, andt). This is obviously not the case in a standa
reaction-diffusion process where reactions may occur a
where in space: there the system is homogeneous. How
comparing with directed percolation, we keep: a single
sorbing state, no parity conservation, no additional conser
quantity. Only translation invariance is broken.

One of our aims in defining the above reaction-diffusi
process is to investigate the influence on the universal p
erties of hardcore versus nonexcluding particles. Hence
either case, we have to assess the role of fluctuations
correlations, and first determine whether the latter are c
sistent with our mean-field picture. For instance, it is we
4-2
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SIMPLE ABSORBING-STATE TRANSITION PHYSICAL REVIEW E65 046104
known that if reactions could take place anywhere in spa
one would come up with a nontrivial exponentb,1 ~in
space dimensions below 4! and a nonzero critical branchin
ratelc ~the so-called threshold effect in epidemic modelin!.
Several questions are in order.

~1! Do fluctuations destroy the mean-field picture? Ho
do fluctuations affect the scaling behavior?

~2! What are the critical exponents characterizing
critical behavior?

~3! What is the difference, if any, between using hardc
or nonexcluding particles on the universal properties?

III. BEYOND MEAN FIELD

A. Ginzburg-Landau criterion

In this paragraph we propose a simple argument to de
mine the upper critical dimension. Definedc(r )[c(r )
2^c&. Let Vj5jd denote acoherence volumeand setdjc
[(1/Vj)*ddrdc(r ), which is the local average of the fluc
tuations in the region over which there are correlations. C
relations between fluctuations are negligible as long as

^~djc!2&!^c&2. ~5!

We first estimate the left-hand side~lhs!. One writes

~djc!25E ddrddr 8

Vj
2

C~r ,r 8!, ~6!

whereC(r ,r 8) is the density autocorrelation function. In
finite volume Ld the total particle number fluctuation
(DNL)2 are of orderLd,

~DNL!25E ddrddr 8C~r ,r 8,j!}Ld, ~7!

so that in the limitL→`C(r ,r 8) must have the scaling form

C~r ,r 8,j!5j2dFS r

j
,
r 8
j D . ~8!

Hence one has

^~djc!2&}j2d. ~9!

Besides, one knows from a mean-field analysis that^c&
}j21/nmf, so that the condition~5! for mean field to hold
becomes

j2d!j22/nmf, ~10!

which is true fordnmf22.0. In the isotropic case wher
reactions take place on a single point in space,nmf

21522d,
so that Eq.~10! requires thatd. 4

3 , while in the anisotropic
case~reactions confined to a hyperplane!, nmf

2151 henced
.2. This establishes the upper critical dimensions4

3 and 2
for the isotropic and anisotropic formulations, respective
above which mean-field analysis applies. Belowdc space
fluctuations are expected to play an important role.
04610
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B. Bosonic field theory

In this section we shall present the explicit renormaliz
tion group calculation for the isotropicd-dimensional con-
tinuation of the model defined in Sec. II. Employing th
coherent state formalism~see Ref.@11# for a review! one
shows that the dynamical properties of the reaction-diffus
process can be deduced from the action

S@c̄,c#5E ddrdt@c̄~] t1sd (d)~r !2¹ r
2!c

1gd (d)~r !c̄c~c2c̄ !2r0d~ t !c̄#, ~11!

in which the fieldc can be thought of as a density field. Th
parameterss, g are coarse-grained versions of the origin
reaction rates, withs}lc2l. The constantr0 is the initial
density of particles. Note that the time reversal symmetry

c~x,t !→2c̄~r ,2t !, c̄~x,t !→2c~r ,2t ! ~12!

allows to focus on a single coupling constantg as in a usual
DP process. Denoting bya the lattice spacing, the continuum
limit was built by scaling the coarse-grained reaction ra
and fields according to

@c#;@c̄#;a2d/2, @s#;a21/(22d), @g2#;a3d24,
~13!

which again indicates thatdc5 4
3 is the upper critical dimen-

sion. In the action we have already omitted a te
g8*dtddrd (d)(r )(c̄c)2 becauseg8 scales asa2(d21), which
makes it an irrelevant coupling in the vicinity ofd54/3.

We set«[423d and we perform an« expansion of the
critical exponents. This is done by introducing a renorm
ized mass and a renormalized coupling:

s5ZssR , g2G«5ZuuRa2«, ~14!

where

G«5

4GS 12
d

2
D 2

GS 11
«

2
D

G~22d!~4p!3d/2

is a dimension-dependent factor that we find convenien
incorporate into the renormalized coupling. TheZ factors are
determined by requiring that the« poles be absorbed into th
renormalized couplings~we follow the dimensional regular
ization and minimal subtraction scheme!.

C. Renormalization

We first express the free propagatorG(x,x8,t) of the one-
dimensional reaction-diffusion process, which is the solut
of

] tG~x,x8;t !1sd~x!G~x,x8;t !2]x
2G~x,x8;t !

5d~x2x8!d~ t ! ~15!
4-3
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We denote byv the Laplace variable conjugate tot ~and
assumet.0). In dimension 1 we find that

G~x,x8;v!5G0~x2x8;v!2
s

2Av~2Av1s!
e2Av(uxu1ux8u),

~16!

with the notationG0(y;v)5 (1/2Av)/ e2Avuyu @the Laplace
transform of G0(y;t)5(1/A4pt)e2y2/4t#. It is not hard to
find the Fourier transform of the propagator

G~k,k8;v!5~2p!d~k1k8!
1

k21v

2
2Avs

2Av1s

1

k21v

1

k821v
. ~17!

To first order ins→0, one finds

G~k,k8;t !5~2p!d~k1k8!e2k2t2s
e2k2t2e2k82t

k822k2
1O~s2!.

~18!

The d-dimensional propagator is easily inferred from t
above. Its Fourier-Laplace transform reads

G~k,k8;v!5~2p!dd (d)~k1k8!
1

k21v

2

~4p!d/2

GS 12
d

2D v12d/2s

~4p!d/2

GS 12
d

2D v12d/21s

1

k21v

1

k821v
,

~19!

so that, to leading order ins→0, one has

G~k,k8;t !5~2p!dd (d)~k1k8!e2k2t2s
e2k2t2e2k82t

k822k2

1O~s2!. ~20!

This is the free propagator of our theory.
Denoting byG (m,n) the m1n point vertex function with

m,n externalc̄,c legs, respectively, we find, to one loop:

G (1,1)~k,k8,v!5~2p!dd (d)~k1k8!~v1k2!

1sE ddk1

~2p!d

ddk2

~2p!d

ddk3

~2p!d

ddk4

~2p!d

3E
0

`

dtG~k1 ,k2 ;t !G~k3 ,k4 ;t !, ~21!
04610
which becomes, in the limits→0,

G (1,1)~k,k8,v!5~2p!dd (d)~k1k8!~v1k2!1sF12
g2G«

« G .
(22)

Similarly, one finds

G (1,2)~$k i50%!52gS 12
2g2G«

« D . ~23!

Thus we find

Zs511
uR

«
, Zu511

4uR

«
~24!

and the related Wilson functions,

gs5a
d ln Zs

da
.uR , gu5a

d ln Zu

da
.4uR . ~25!

We deduce the couplingb function

bu[a
duR

da
5uR~«2gu!.uR~«24uR!. ~26!

It has a single stable fixed pointuR* 5«/4 from which we
deduce the correlation length critical exponent

n21522d2gs.
2

3
1

«

12
. ~27!

It is important to note that the field and the diffusion consta
remain unrenormalized, which imposes

b

n
5

d

2
, z52, ~28!

to all orders in« ~that is, providing there exists a perturbativ
fixed point!. This is an interestingexact prediction of the
field-theoretic approach that has no equivalent property
usual DP. The order parameter exponent has the expres

b512
3«

8
, ~29!

which is valid to first order in«.
Interestingly, in the anisotropicd-dimensional continua-

tion of our model, the critical exponents readn2151
2«8/4 andb5(21«8)/3, with «8522d. The independent
«8522d and«5423d expansions coincide to leading o
der. The propertyb/n5d/2 is maintained.

D. One loop calculation of the equation of state

We now derive the equation of state for the stationa
uniform value ofc(r ,t) in the isotropic case. This will allow
us to find the explicit expression of the order parameter
the active phase close to the critical point without resort
to any scaling hypothesis.
4-4
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We perform the replacementc̄5f̄ andc5f1C in the
action Eq.~11!. The quantityC is chosen to be the uniform
stationary solution of the equation of state. In terms of
new fields the action reads

S@f̄,f,C#5E dtE ddr $f̄„] t1d (d)~r !~s12gC!2D r…f

2gf̄2C1d (d)~r !@k~f̄f!21g2f̄f~f2f̄ !#

1f̄@] t1d (d)~r !s2D r#C2d (d)~r !gf̄C

1d (d)~r !@2kf̄2fC1k~f̄C!21gf̄C2#%.

~30!

The equation of state is obtained by writing that

dG

df̄
@f50,f̄50#50. ~31!

To one loop order the lhs of Eq.~31! reads

sC1gC22gE ddq1

~2p!dE ddq2

~2p!d
^f~q1 ,t !f~q2 ,t !&50,

~32!

where we have used the fact thatC is constant in space an
time. The initial condition was projected back tot52`. Of
course Eq.~32! has the solutionC50. We now need the
density of particles autocorrelation function

C~q1 ,t;q2 ,t8![^f~q1 ,t !f~q2 ,t8!&. ~33!
p

ng
n

04610
e

Standard techniques of Gaussian integrations yield

C~q1 ,t;q2 ,t8!52gCE
0

t,

ds
ddk1

~2p!d

ddk2

~2p!d

3GC~q1 ,k1 ;t2s!GC~q2 ,k2 ;t82s!,

~34!

where the indexGC means exactly the functionG0 of Eq.
~19! in which s was replaced withsC[s12C, that is,

GC~q,q8,v!5~2p!dd (d)~q1q8!
1

q21v

2
sCCdv12d/2

sC1Cdv12d/2

1

q21v

1

q821v
. ~35!

Before performing the two required Fourier integrals we
mark that

E ddk

~2p!d
GC~q,k;v!5

Cdv12d/2

sC1Cdv12d/2

1

q21v
, ~36!

so that, returning to the time domain,

E ddk

~2p!d
GC~q,k;s!5E dv

2p i
evsGC~q,k;v! ~37!

by folding the integration path around the cut on the nega
half-axis, we have
E ddk

~2p!d
GC~q,k;s!5

sin@p~12d/2!#

p

~4p!d/2

G~12d/2!
E

0

1`

dxe2xs
1

x12d/212cos@p~12d/2!#1xd/221
. ~38!

The last step is to compute the integral

Ku5E
0

`E
0

`

dxdy
~xy!u

@112 cos~2up!x1x2#@112 cos~2up!y1y2#~x1/u1y1/u!
, ~39!
.

to
R

5(usRu/g)(11cgR
2) and develop Eq.~41! to gR

2 order to
with u512d/2. We find that

K12d/25
K (1)

«
1K (2)1O~«!, «→0, ~40!

where we have dropped the leading UV divergence. A sim
asymptotic expansion givesK (1)54p/A3. By rewriting s
and g in terms of renormalized quantities and developi
first in powers ofgR then in « the equation of state ca
finally be written as
le

sRC1A21/2gRC222gR
2C~sR12A21/2gRC!H B1

K (2)

K (1)

23 ln~sR12A21/2gRC!J 50, ~41!

whereA5A3G(1/3)3/(8p3), andB is a numerical constant
The diverging terms of order 1/« disappear from Eq.~32! to
Eq. ~41! as expected. As we look for the first correction
the mean-field result C5us u/g, we can write C
4-5
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OLIVIER DELOUBRIÈRE AND FRÉDÉRIC VAN WIJLAND PHYSICAL REVIEW E 65 046104
determine the coefficientc. Assuming thatusRu→0 at criti-
cality, one finally finds

C5C«usRu123«/8, C«.
AG~1/3!

2pA«
. ~42!

This nicely confirms the one-loop expansion of the ord
parameter exponentb5123«/8 and further yield the ampli-
tude to leading« order.

E. Finite-size scaling analysis

It is instructive to investigate some finite-size propert
of the transition and to compare with what one would obt
for a usual DP process. In particular we would like to kno
in a finite-size system, what the lifetime of the active state
We follow the route outlined by Janssenet al. @12#. We split
the order parameter fieldc(q,t) into

c~q,t !5C~ t !1f~q,t !, ~43!

where C(t)5c(q50,t), which definesf(q,t). With peri-
odic boundary conditions, the Fourier modes areq
5(2p/L)(n1 , . . . ,nd), nmP$0, . . . ,L21%. The next step
is to rewrite the actionS@c̄,c# in terms of the newly intro-
duced fields. Our interest goes to the homogeneous mod
the steady-state, so that by integrating out theq5” 0 modes
we obtain an effective actionSeff for the q50 modeC(t)
only. Of course, the latter procedure can only be perform
within the framework of a~renormalized! perturbation ex-
pansion. The one-loop result reads

Seff@C̄,C#5E dt@Ldc̄Ċ1sRc̄C1gRC̄C~C2C̄!#.

~44!

We prefer working in rescaled fields and variables,

t5
L3d/2

gR
t, C~ t !5L2d/2F~t!. ~45!

The actionSeff for F is equivalent to the probability densit
function P(F,t) of F satisfying the following Fokker-
Planck equation:

]tP~F,t!5
]

]F
@~gF1F2!P#1

]2

]F2
~FP!, ~46!

with g[(sR /gR)Ld/2. It is well known@12# that the smallest
nonzero eigenvalue of Eq.~46! is

v;ugu3e2g2/2, ~47!

which decays ase2Ld
as L→`. Hence the lifetime of the

active state goes to infinity in the thermodynamic limit. Th
parallels exactly what occurs in a usual directed percola
process. This adds an important feature that our model sh
with a common absorbing-state transition.
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IV. ANALYSIS OF THE FERMIONIC CASE

A. Heuristic approach

In contrast to the bosonic case, there is no firmly est
lished easy-to-use field-theoretic formalism to cope with
fermionic constraint. It was recently shown how to incorp
rate the exclusion constraint in a field-theory of a boso
type@13#. But the resulting action has exponential interacti
terms that are difficult to exploit analytically, except by e
panding them. This would lead us back to analysis of
bosonic theory, dropping terms potentially relevant in dime
sion 1. It is interesting to note that the action that incorp
rates the hardcore constraint does not have the time-rev
symmetry that the bosonic action possesses.

An alternative approach suggested by Cardy@14# consists
in working directly in dimension 1 and in observing that th
world lines of hardcore bosons behave as those of free
mions, at least between branching and annihilation eve
This is equivalent to studying the effect of branching at t
annihilation fixed point that corresponds~in the present in-
homogenous case as well! to an infinite rate annihilation of
particles meeting at the origin. We briefly recall the ste
leading to a fermionic field theory accounting for the har
core exclusion.

B. From the master equation to a quantum spin chain

Let n[$ni% denote a general configuration of the loc
occupation numbersni (ni50 or 1!. The time evolution of
the probabilityP(n;t) to find the system in the microstaten
at time t evolves according to a master equation

dP~n;t !

dt
5(

n8
@W~n8→n!P~n8;t !2W~n→n8!P~n;t !#,

~48!

whereW(n8→n)dt is the probability that the system goe
from state n8 to state n between t and t1dt. Setting
uF(t)&5(nP(n;t)un&, the master equation is equivalent
an evolution equation

duF&
dt

52ĤuF&, ~49!

where the stochastic evolution operatorĤ encodes the mi-
croscopic dynamics defining the model. The reader is
ferred to Schu¨tz @15# for a review of the properties of suc
operators. When a site has occupation numbern, one defines
the spin variables52n21, which is the eigenvalue of the
operatorsz52n̂21. In the spin language, the evolution o
erator usually takes the form of conventional quantum s
chain Hamiltonian in an external~possibly complex! field.
For reactions involving three particles or more, three-s
terms are present.

C. From the spin chain to a fermionic theory

Spin operators are known to be convenient to desc
hardcore bosons. The Jordan-Wigner transformation allo
one to express physical observables in terms of fermio
4-6
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operators. It can be shown that a physical observable is
tained by determining the vacuum expectation value of pr
ucts of fermionic operators weighted by a factore2H̃t, where

H̃5e(
i

s i
2

Ĥe2(
i

s i
2

. ~50!

HenceH̃ is obtained fromĤ by substituting thes1 by s1

2s21122n̂. At this stage, the spin operators are replac
by their fermionic expressions. In order to build up a fie
theory, one simply replaces~after normal ordering! the fer-
mionic operators by their Grassmann eigenvalues~this actu-
ally works for interaction terms made of an even number
fermionic operators, and odd powers must be dealt w
greater care@16#!. The average density is the average va
of the Grassmann field associated to the annihilation oper
weighted by exp(2S), whereS is the fermionic action tha
depends on a pair of Grassmann fields.

D. Action and scaling analysis

In the fermionic case, only one particle is allowed to
on sitex50; if an offspring is produced, it is placed on th
neighboring site. Similarly, coagulation occurs between
particle located atx50 and one of its two nearest neighbor
Power counting performed on the action

S@c̄,c#5E dxdt$c̄@] t1Dsd~x!2D]x
2#c

1Dgd~x!c̄c~]xc2]xc̄ !% ~51!

now indicates thatg;a1/2 and hence is irrelevant. Mean
field applies, hence ind51, b51. Let us stress that we
have deliberately omitted nonlocal factors in the fermio
action. Following the analysis presented in Ref.@14#, we
know that they do not enter the scaling analysis though t
will introduce nontrivial symmetry factors.

V. DISCUSSION AND PROSPECTS

We have shown that the hardcore constraint may be
crucial importance on the universality class of a transition
an absorbing state occurring in a nonequilibrium steady st
This is all the more surprising as the density approaches
as one gets closer to the critical point, so that the probab
of having several particles piled up on a site~in the bosonic
version! must be extremely low. Although it is a well
understood fact that biased diffusion of hardcore partic
exhibits a scaling behavior~described by the noisy Burger
equation! quite different from the purely diffusive bosoni
counterpart, in the absence of any drift, it is hard to build
an intuitive picture that would fit into our findings. Similarly
it is well known that at a finite density, the typical displac
ment of ataggedhardcore particle increases with time ast1/4,
as opposed to the Brownian motiont1/2 satisfied by bosonic
particles. Yet, as far as collective behavior is concerned
know of very few properties specific to either family of pa
ticles ~remember particles are indistinguishable!. Admittedly,
not being able to coin a heuristic picture does not mean th
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exists none, but it could also be an indication that the exp
nation lies in some ‘‘mathematical property’’ yet to identif
as was the case in BARWE. One could show that the tim
reversal symmetry~12! satisfied by the actions describin
bosonic particles of DP and of our model does not extend
fermionic particles. Could it play the role of such a ‘‘math
ematical property?’’

We would like to conclude on the difficulty of performin
numerical simulations of our process. Besides the usual
ficulties associated to absorbing states and to phase tr
tions, our system possesses a relaxation time that dive
much more sharply withl2lc than in an ordinary
absorbing-state transition@in mean field it diverges as (l
2lc)

22 as opposed to (l2lc)
21 for an ordinary DP pro-

cess#. However, a numerical simulation would be necess
to investigate the boson vs fermion issue. Indeed a finite-
scaling analysis gives access to the ratiob/n @using the scal-
ing ansatzC(L,s)5L2b/nF(L1/ns)#. This is precisely the
quantity that we predict exactly in the bosonic case (b/n
51/2) and that could be compared with mean field or ferm
onic value (b/n51). A numerical analysis investigatin
those issues should be our next step.
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APPENDIX

In this appendix we would like to show how the origin
reaction-diffusion process can be described in terms o
non-Markovian single-site process taking place at the ori
of the lattice. We shall integrate out the degrees of freed
describing pure diffusion on the sitesi 5” 0 and find the re-
sulting effective interaction for the number of particles at t
origin at timet. Our motivations for doing this are twofold
First, since interactions are taking place at the origin only
should prove more illuminating to have a process defin
there in which only the free diffusion away from the orig
has been incorporated as an effective interaction. Second
renormalization group and scaling analyses rely on the e
tence of a continuous limit. However, due to the very sing
lar role played by the origin, it could be that special ren
malization has to be done for the field defined at the orig
In that respect, working directly with an interacting theo
defined on the origin only will answer those worries.

For notational simplicity, we restrict the presentation
the one-dimensional case: the particles diffuse on a lattic
unit spacing with sites at2L,2L11, . . . ,L. We adopt re-
flecting boundary conditions and setD as the diffusion con-
stant. We consider an assembly of independently diffus
particles. The action describing their dynamics is

S5E dtF(
i 51

L

f̄ i] tf i2D (
i 52

L21

f̄ i~f i 2122f i1f i 11!

2Df̄1~f022f11f2!2Df̄L~fL212fL! (
i 521

2L

f̄ i] tf i
4-7
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2D (
i 522

2L11

f̄ i~f i 2122f i1f i 11!2Df̄1~f022f21

1f22!2Df̄2L~f2L112f2L!f̄0] tf02Df̄0~f21

22f01f1!. ~A1!

We want to trace out all the fields$f̄ i(t),f i(t)% i 5” 0 describ-
ing diffusion away from the origin. We split the action in th
form

S5S01S1
11S1

21S2
11S2

2 , ~A2!

with S05*dtf̄0] tf012df̄0f0 , S1
652*dtD(f̄61f0

1f̄0f61), and

S2
15E dtF(

i 51

L

f̄ i] tf i2D (
i 52

L21

f̄ i~f i 2122f i1f i 11!

2Df̄1~22f11f2!2Df̄L~fL212fL!G
5E dtF(

i 51

L

f̄ i] tf i2D (
i , j 51

L

f̄ iAi j f j G , ~A3!

with Ai j an L3L symmetric matrix,

A5S 22 1

1 22 1

1 22 1

1 21

D . ~A4!

The analog fori 52L, . . . ,21 definesS2
2 . There exists a

unitary matrixU such that

(
i , j 51

L

Uqi
21Ai j U jq85dqq8lq . ~A5!

We definecq(t)5( jU jqf j and c̄q(t)5( jU jqf̄ j . ThenS2
1

5*dt(qc̄q(] t2Dlq)c2q . Introducing the Fourier trans
forms

cq~v!5E dteivtcq~ t !, c̄q~v!5E dteivtc̄q~ t !,

~A6!

we find

S2
15E dv

2p (
q

c̄2q~2v!~2 iv2Dlq!cq~v!,

lq522~12cosq!. ~A7!

We also expressS1
1 in terms ofc̄,c and we perform explic-

itly the integration over those fields, withf̄0 ,f0 as param-
eters. We obtain the total effective action
04610
Seff@f̄0 ,f0#5E dtF f̄0] tf012Df̄0f0

12D2E
2`

t

dt8(
q

U1q
2 eDlq(t2t8)f̄0~ t !f0~ t8!G .

~A8!

Solving the diagonalization problem yieldsU1q

5A(2/L)sinq with q solution of tanLq5cotq/2, 0,q,p
~there are exactlyL solutions!. We now turn to the interpre-
tation of the memory kernel appearing in the effective acti
The Green function associated with the matrixA is

Gi j ~ t !5(
q

U jqUqi
21eDlqt, ~A9!

which is the probability to be at sitej at time t given the
walker started at sitei at time 0. The quantityDG11(t) is the
flow of probability from 1 to 0 at timet, for a walker that
started from site 1 at time 0. Since this flow is irreversib
DG11(t) is also the probability that the first visit to 0 take
place exactly at timet given the walker started from site 1 a
time 0. Standard random walk theory allows to find t
Laplace transform ofDG11(t),

DĜ11~p!5
p

2D
2

1

2D

1

G0~p!
, ~A10!

with G0(p)5*2p
p (dq/2p)@1/p12D(12cosq)# the Laplace

transform of the return to the origin probability of a simp
random walk. Returning to the time domain, one finds th

Seff@f̄0 ,f0#5E dtE
2`

t

dt8G~ t2t8!f̄0~ t !f0~ t8!,

~A11!

with the Laplace transform of the memory kernel

Ĝ~p!5
1

G0~p!
. ~A12!

We are thus left with the study of the zero-dimension
time dependent processf(t) whose dynamics is encoded i
the following action:

S@f̄0 ,f0#5E dtdt8f̄~ t !Q~ t2t8!G~ t,t8!f~ t8!

1reaction terms. ~A13!

It is well known that in the continuous limit~now generaliz-
ing to d,2 space dimensions!

G0~p!5

GS 12
d

2D
~4p!d/2

pd/221, p→0, ~A14!
4-8
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and we shall henceforth adopt this limiting form, supp
mented by a high-frequency cutoffV. This is equivalent to
using the memory kernel

G~ t,t8!5Q~ t2t8!
1

@4p~ t2t8!#d/2
~A15!

with a short time cutoff V21. The quantity G0(p)/
@11sG0(p)# plays the role of the propagator in this zer
dimensional process. We now perform the power-count
procedures in units of the frequency cutoffV:

f~ t !;f̄~ t !;Vd/4, g;V123d/4. ~A16!

We shall now perform a Wilson-type renormalization proc
dure. We trace out all degrees of freedomf.(v) with fre-
quency in the intervalV>uvu>V/b, whereb.1 is a re-
scaling factor to be taken asymptotically close to 1.
course the tracing out of those high-frequency degrees
freedom can only be performed perturbatively. The first n
trivial contributions give rise to effective couplings betwe
the f, fields ~defined for frequenciesuvu,V/b) exactly of
the same form as the already present ones. Thus the th
defined at the coarse-grained scaleV/b has newb-dependent
couplingss(b) andg(b). The recursion relation for the ef
fective couplings defined at scaleb5el are

ds

dl
5S 12

d

2
24g2KdV2«/2Ds1

2GS 12
d

2D 2

~4p!d11
g2cdVd,

«5423d ~A17!
s
e,

e,

e

s.
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and

dg

dl
5gS «

4
28g2KdV2«/2D , Kd5

2G~12d/2!3

~4p!(3d12)/2
.

~A18!

The latter equation possesses a single stable fixed p
g!2KdV2«/25«/32. The correlation time critical exponen
thus has the expression

~zn!21512
d

2
24g!2KdV2«/2512

d

2
2

«

8
5

1

3
1

«

24
.

~A19!

One recovers in an elegant way the dimensional regular
tion results for the critical exponents.

No relevant effective interaction is generated: in partic
lar, the one-loop graph renormalizing the propagator is p
portional to

E dv

2p
f,~2v!f,~v!

3E dw

2p U G0~w!

11sG0~w!

G0~v2w!

11sG0~v2w!
U. ~A20!

Expanding the terms in the integral in powers ofv produces
only integer powers ofv, which correspond to irrelevan
interactions. This establishes the absence of field renorm
ization in this problem.
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