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Simple absorbing-state transition
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We study a simple reaction-diffusion process that exhibits a phase transition to an absorbing phase in its
steady state. We characterize the universal properties of the transition by computing the associated critical
exponents. We suggest that the exclusion constraint between particles may change the universality class of the
transition even though the density is asymptotically low at the transition. This is suprising as no segregation or
jamming phenomena are in play since we are dealing with a single species diffusing without drift.
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I. MOTIVATIONS There are a handful of microscopic ingredients that are
well known to change the universality class of a transition,
Absorbing-state transitions in nonequilibrium steadyoften inspired by our knowledge of equilibrium critical phe-
states occur when a system evolving in time gets trapped inomena. Noise with long-range correlations or long-range
a state that it cannot escape frddy. In many examples jumps (of a Levy flight type), boundary effects8], or
absorbing states are completely inactive configurations ifluenched disorder are three such ingredients. Another ingre-
which all microscopic degrees of freedom remain constanélient that is specific to nonequilibrium steady states is the
throughout time. Such absorbing states cannot be encoufiumber of absorbing states the system can fall into. It is
tered in equilibrium systems. On the experimental side, trantnique in the DP case. There are two in the BARWE case:
sitions to an absorbing state were first found in chemicathe parity of the total number of particles being conserved
reactions(the Schigl autocatalytic reaction From the the- throughout time, depending on the initial number of par-
oretical standpoint, they are natural nonequilibrium generaliticles, the absorbing state will have either one or zero par-
zations of the phase transitions between Gibbs states fourii¢le. In the FES-related cases, where systems possess an
in equilibrium critical phenomena. The paradigmatic ex-additional conservation law, there is an infinite number of
ample of such a transition is embodied by the so-called diabsorbing states that the system can freeze into. We refer the
rected percolationDP) universality class. The latter has reader to the recent review of Hinrichsgi.
been invoked to describe surface roughening, fluid flows in In the present paper, because the DP class is the most
porous media, cellular automaffa], epidemic spreading in Prominent of all by far, we focus on an extremely simplified
population dynamics models, avalanches in some selfversion of a DP-like process on which we wish to test the
organized sand-pile model8], and a host of reaction- importance of using mutually excluding particlés fermi-
diffusion processes. It remains the focus of intense experionic) versus nonexcludingor bosonig ones on the universal
mental interesf4] because, up to this day, there has been ndroperties of the system. Analytic progress will be made pos-
experimental confirmation of the critical exponents found bysible due to the simplicity of our system. There is an increas-
numerical simulations of lattice models. Of less general reling body of evidence that the hardcore constraint may
evance but of equal theoretical importance, we mention th€hange critical propertigd.0]. This has stimulated us to look
branching and annihilating random walk with an even num-at a model simple enough for analytic statements to be made.
ber of offsprings BARWE) whose universal properties were ~ We have organized our work as follows. in Sec. II, we
recently elucidated by Cardy and(tzer[5]. Recently, Rossi give a precise description of the microscopic rules of our
et al.[6] unravelled another universality class in performingmodel and provide further motivations for introducing it.
an extensive exploration of stochastic fixed-energy sand-pil&ection Ill is dedicated to a renormalization group analysis
models(FES and of related stochastic processes. In the fol-of the critical properties of the process. This includes a deri-
|0wing, we will a|Ways adopt the reaction-diffusion processvation of the renormalized equation of state from which we
vocabulary; the microscopic degrees of freedom are locatan extract the order parameter without resorting to a scaling
particle numbers. In that language, DP is characterized by theypothesis. We devote Sec. IV to giving arguments in favor
two reactions A—A+A, A+A—Q with diffusion, Of a difference between bosons and fermions. Finally, we
BARWE by A—=A+A+A, A+A—J with diffusion, and  Present in an Appendix a formulation of our reaction-
an example of a system in the FES class is one in which pairgiffusion process in terms of a zero-dimensional process with
of particles can perform independent nearest-neighbor jumpgng-term memorywhich allows an alternative derivation of
(a single particle on a site remains at rest; the order paranthe results presented in Sec.)lll
eter is the number of pairs of particles sitting on the same
site). We emphasize that almost no exact result is known on Il. MODEL AND PHASE DIAGRAM
those systems from an analytic viewpo[m]|. This makes
simple models particularly welcome and the one we shall
introduce in this paper already shares most of the difficulties We consider a single species of particles whose members
of directed percolation. are generically denoted b4 We immediately make the dif-

A. Fermions versus bosons
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ference between mutually excluding particles that evolve rehence, sincél’ must be even it takes the forfi(x) = A|x|
specting the hardcore constraint. Such particles will abu-+B (A,B constants The existence of a thermodynamic
sively be christenedermionic particles. We will also need limit imposesA=0, hence a steady state is necessarily ho-
so-calledbosonicparticles, for which there is no hardcore mogeneous in space. We now return to the boundary condi-
constraint and that do not exclude each other. In the formetion atx=0 from which we deduce
case, local particle number are restricted to 0 and 1, while
they may take any integer value from Otain the latter. The N
microscopic rules depend slightly on whether we choose fer- Y= 4
mionic or bosonic particles.

Particles are initially randomly and independently distrib-y,/, identify the order parameter exponent defined Wby

gted on the sites of a one-d|mep3|onal latioé unit Spac- _(\—\.)# as =1 and\,=0 within the mean-field ap-
ing) with an initial average density,. Here are the micro- proximation.

scopic rules of our reaction-diffusion process. In the particular case\=0 the density at the origin

sive motion with difusion consiard, fwe choose the fer- USCaYS s 1R. FOr\>0, the system relaxes exponental
) to its steady state with a relaxation timig,,,~\ " "%, z=2,

mionic formulation, jumps on nearest-neighbor sites can _
only occur if the target site is empty, else the motion is” .
rejected(but time keeps elapsing

(2) Branching with one offspringA particle that sits at the
origin of the lattice produces an offspring betweteand t
+dt with probability Adt. In the bosonic formulation, the
offspring is placed at the origin, while in the fermionic for-
mulation, the offspring is placed randomly on one of the two
nearest-neighbor sites, provided the target site is elfglse
nothing happens

(3) Annihilation In the bosonic formulation, two particles
sitting at the origin annihilate with probabilitydt betweert

The phase diagram is that of directed percolation: Nor
>0 there is an active phase that contaminates the whole
space, while forh=0 the system falls into an absorbing
state. Of course, the universality class of the phase transition
is different from the DP one.

As a final remark we note that there exist two ways to
continue our problem to higher space dimensions. The first
one—for which we shall present explicit calculations—
consists in considering free diffusion in the whole
d-dimensional space but reactions confined to the origin. An
andt + dt. Within the fermionic description, a pair of nearest alternative continuation consists in allowing reactions to take

) . X . . .. place on ad—1)-dimensional hyperplane. We shall call the
neighbor particles one of which sits at the origin annihilate . . . . .
with probability kdt betweent andt -+ dt. former formulation the isotropic model, while the latter is the

No reaction occurs away from the origin of the lattice. anisotropic one.
The above rules, supplemented with the initial condition, de-

fine a Markov process for the set of local occupation num- C. Motivations
bersn={n;}, with nj=0,1 in the fermionic formulation, and |n this paragraph, we would like to give the motivations
n;=0, ... in the bosonic formulation. This constitutes the that have led to the definition of our toy-model. As usual in

reaction-diffusion process that we are now going to study. statistical mechanics, the greatest task is to assess the effect
of fluctuations and correlations between degrees of freedom.
B. Phase diagram within a mean-field approach In many systems their importance is seen to increase as space
gimension is decreased. On the other hand, one has the intu-
ition that, if there exists an upper critical dimension in our
system, it will be lower than that of directed percolation
(branching and annihilation takes place anywhere in space,
along with diffusion), since we have reduced the sources of
Ap(X, ) =D a2+ N\ 8(X) h—kS(X) 2, (1)  reaction noise to a minimum level.

At any finite time, the system is strongly inhomogenous,
in which one easily recognizes the usual diffusion and reacwith the density ara priori complicated scaling function of
tion terms. Since the reaction rates take nonzero values onBil dimensionless variables built with the parametesg, (
on the subspac&=0, we have introduced reaction terms A —\., X, andt). This is obviously not the case in a standard
localized atx=0. The above equation is equivalent to reaction-diffusion process where reactions may occur any-

where in space: there the system is homogeneous. However,
01¢—D(9§l//=0- 2D, (0" ,t) + N p(0t) —ky?(0,t) =0, comparing with directed percolation, we keep: a single ab-
(2)  sorbing state, no parity conservation, no additional conserved
quantity. Only translation invariance is broken.
with ¢ continuous and even in the coordinateHence we One of our aims in defining the above reaction-diffusion
are dealing with a diffusion equation with nonlinear bound-process is to investigate the influence on the universal prop-
ary conditions. It is straightforward to see that, if there existserties of hardcore versus nonexcluding particles. Hence, in

Our mean-field approach does not distinguish betwee
fermions and bosons. We denote #x,t) the local density
of particles at sitex. We write a reaction-diffusion equation
for (x,t1),

a steady-state profil# (x) = #(x,t—«), one has either case, we have to assess the role of fluctuations and
) correlations, and first determine whether the latter are con-
o ¥ (x)=0, ©) sistent with our mean-field picture. For instance, it is well-
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known that if reactions could take place anywhere in space, B. Bosonic field theory

one would come up with a nontrivial exponegt<l (in In this section we shall present the explicit renormaliza-
space dimensions below and a nonzero critical branching tjon group calculation for the isotropid-dimensional con-
rate) . (the so-called threshold effect in epidemic modeling iyuation of the model defined in Sec. II. Employing the

Several questions are in order. _ _ , coherent state formalisritsee Ref.[11] for a review one
(1) Do fluctuations destroy the mear)-ﬂgld picture? HOWghows that the dynamical properties of the reaction-diffusion
do fluctuations affect the scaling behavior~ process can be deduced from the action

(2) What are the critical exponents characterizing the
critical behavior? — T @ 5
(3) What is the difference, if any, between using hardcore Sy, ‘/f]:f drdt[ (9 + o8V (r) = VD)
or nonexcluding particles on the universal properties?

+g8 V() yp(h— ) —pedD Y], (1D

in which the fieldys can be thought of as a density field. The
parametersr, g are coarse-grained versions of the original
In this paragraph we propose a simple argument to detereaction rates, witlrh.—\. The constanpy is the initial

mine the upper critical dimension. Defindy(r)=y(r)  density of particles. Note that the time reversal symmetry

—(4). Let V.= ¢ denote acoherence volumand sets, o o

E(1N§)fddr Sy(r), which is the local average of the fluc- (X, ) ——(r,—t), p(X,t)——i(r,—t) (12

tuations in the region over which there are correlations. Cor-

relations between fluctuations are negligible as long as  allows to focus on a single coupling constaas in a usual
DP process. Denoting kythe lattice spacing, the continuum

((8a)?)<()>. () |imit was built by scaling the coarse-grained reaction rates

and fields according to

IIl. BEYOND MEAN FIELD

A. Ginzburg-Landau criterion

We first estimate the left-hand sidks). One writes
drqdr’ [W1~[¥l~a %% [o]~a Y9, [g*]~a®"",

d
(6§w)2=f V2 C(r,r"), (6) (13)
¢

which again indicates that.= 3 is the upper critical dimen-
where C(r,r') is the density autocorrelation function. In a sion. In the action we have already omitted a term
finite volume LY the total particle number fluctuations g’fdtd%r 89 (r)(y)? becausay’ scales ag?@ 1), which
(AN,)? are of order_¢, makes it an irrelevant coupling in the vicinity df=4/3.

We sete=4—3d and we perform ar expansion of the

2 | 4d.qd.s , d critical exponents. This is done by introducing a renormal-
(4N _f drdrCrr gel (" ized mass and a renormalized coupling:
so that in the limit.—oC(r,r') must have the scaling form 0=Z,0r, G°G,=Z,uga ®, (14)
_adr where
C(r,r',&)=¢& df(g,g . (8)

d\?2 €
Hence one has 4r 1—5 r 1+§
((Seip)?yec&™e. (9) ¢ T(2—d)(4m)32

Besides, one knows from a mean-field analysis that  is a dimension-dependent factor that we find convenient to
o &~ Wmt 5o that the conditior(5) for mean field to hold incorporate into the renormalized coupling. Théactors are

becomes determined by requiring that thepoles be absorbed into the
renormalized couplingéwve follow the dimensional regular-
E < g 2vmi, (10)  ization and minimal subtraction schene
which is true fordv—2>0. In the isotropic case where C. Renormalization

reactions take place on a single point in spaqﬁl,=2—d,
so that Eq.(10) requires thatd> %, while in the anisotropic
case(reactions confined to a hyperple)n@r;fl:l henced

We first express the free propaga®fx,x’,t) of the one-
dimensional reaction-diffusion process, which is the solution

>2. This establishes the upper critical dimensignand 2 of

for the isotropic and anisotropic formulations, respectively, G (X, X" ;1) + o 8(X)G(X, X' ;1) — 32G(X,X";t)
above which mean-field analysis applies. Beldw space

fluctuations are expected to play an important role. =8(x—x") (1) (15)
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We denote byw the Laplace variable conjugate to(and
assumd>0). In dimension 1 we find that

G(x,X";w)=Gp(x—X";w) — e Valx+[x')

g
2Jw(2 o+ o)
(16)

with the notationGo(y; ») = (1/2\w)/ e~ @yl Tthe Laplace

transform ofGO(y;t)=(1/\/47rt)e‘y2’4‘]. It is not hard to
find the Fourier transform of the propagator

G(k,K";w)=(2m)6(k+k")

k24 w
Voo 1 1
- 2 12 ' (17)
2\/;4-0' kKot w k'“+w
To first order inc— 0, one finds
—K%t_ o—k'%t
G(k,k';t)=(2m) 8(k+k e K- —e+0( 2)
1 y - o (o k/2_k2 g .
(18

The d-dimensional propagator is easily inferred from the

above. Its Fourier-Laplace transform reads

Gk,k";w)=(2m)95D(k+k")

k?+ w
(4m)@ 1-dr2
a0
F( 1= E) 1 1
- arz ; )
(477) d wlid/z‘f‘O' k2+(1) k 2+(1)
a3
(19
so that, to leading order ir— 0, one has
—K%t_ oK%t
G(k,k";t)=(2m) 96D (k+ k’)e’kzt—o_—e
v k/2_k2
+0(0?). (20

This is the free propagator of our theory.
Denoting byI'(™™" the m+n point vertex function with

m,n externalﬁ,w legs, respectively, we find, to one loop:

Tk k', ) =(2m) 6D (k+k") (0+k?)

PHYSICAL REVIEW E 65 046104

which becomes, in the limit—— 0,

ZGE
IOk k' w)=(2m) 8D (k+k" ) (w+k?) +o| 1- 2 . }
(22)
Similarly, one finds
29°G,
F(l'z)({ki=0})=29(1— gs ) (23)
Thus we find
u u
zZ,=1+ ?R Z,=1+ — (24)
and the related Wilson functions,
dinz, dinz,
'y0=a da :UR, 'yu=a da :4UR. (25)
We deduce the coupling function
dug
ﬁuzaa:UR(S_ Yu)=Ur(e —4Ug). (26)

It has a single stable fixed points=e/4 from which we
deduce the correlation length critical exponent

(27)

It is important to note that the field and the diffusion constant
remain unrenormalized, which imposes

B_d

v 2’ 2=2,

(28)

to all orders ine (that is, providing there exists a perturbative
fixed poind. This is an interestingexact prediction of the
field-theoretic approach that has no equivalent property in

usual DP. The order parameter exponent has the expression

B=1-4. (29
which is valid to first order ire.

Interestingly, in the anisotropid-dimensional continua-
tion of our model, the critical exponents read =1
—¢&'l4 andB=(2+¢")/3, with e’ =2—d. The independent
g'=2—d ande=4-3d expansions coincide to leading or-
der. The property3/v=d/2 is maintained.

D. One loop calculation of the equation of state

d%; d%, d%; d%,

+o f We now derive the equation of state for the stationary
(2m? (2m)* (2m)? (2m)*

uniform value ofis(r,t) in the isotropic case. This will allow
us to find the explicit expression of the order parameter in
the active phase close to the critical point without resorting
to any scaling hypothesis.

X J:dtG(kl,kz;t)G(kg,k4;t)1 (21
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We perform the replacememit= ¢ and = ¢+ ¥ in the

action Eq.(11). The quantity\W is chosen to be the uniform
stationary solution of the equation of state. In terms of the

new fields the action reads
S[9.6.01= | at [ d* (g0 6900 0+ 299)- 86
—g 2V + 8D (r)[k(pp)2+g%pp(p— )]

+ P+ V(o —A ¥ - 5D (r)gp¥

+6(r)[2kp2pW + k()2 +gpW2]}.
(30)

The equation of state is obtained by writing that
[ $=0$-0]-0 (3D
5p ’ '

To one loop order the lhs of E§31) reads

d%q, [ d,
2_ =
oV +gW¥ gf(Zw)df(277)(,<¢(q1,t)¢(q2,t)> 0,
(32

where we have used the fact thitis constant in space and

time. The initial condition was projected backtte — . Of
course EQ.(32) has the solution?=0. We now need the
density of particles autocorrelation function

C(01,t;02,t")=(b(d1,1) P(02,t")). (33

PHYSICAL REVIEW BE55 046104
Standard techniques of Gaussian integrations yield

d%,; d%,
(2m)? (2m)°

te
C(Qlff;ant’):zg‘I’f ds
0
XGy(y,K1;t—=5)Gy(dy,kat" =),
(34

where the indexGy means exactly the functio&, of Eq.
(19) in which o was replaced withrg =0+ 2V, that is,

Gy(0,0",0)=(2m 5 (q+q")

q2+w
O'q,Cd(x)lid/Z 1 1 (35)
Uq,+de1_d/2 q2+ ® q’2+ 0

Before performing the two required Fourier integrals we re-
mark that

ddk del—dIZ
f riCHakio) . (36

O'q;"‘Cda)l_d/Z q2+w

so that, returning to the time domain,

d do
f(zﬂ.)dG‘I’(qak;s)zjmew Gy(g,k;®) (37

by folding the integration path around the cut on the negative
half-axis, we have

f ddk ok sin[m(1—d/2)] (4m)%? +wd e 1 38
K S)= xe .
(2m)d " q I'(1-d/2) Jo x1~924 2cod w(1—d/2)]+x%21
The last step is to compute the integral
= (= (xy)"
Ku:f f dXdy 2 2 1 iy’ (39)
0Jo [1+2 cog2um)x+x°][1+2 cog2um)y+y ] (x""+y~")
|
with u=1-d/2. We find that K2
orW +A VW2 - 293V (ot 2AT YogRW) B+ 5
K (1) 2
Kl—d/2:T+ K +O(8), 8_>o! (40) -3 |n(O'R+ 2Al/29R\P)} :0, (41)

where we have dropped the leading UV divergence. A simplevhereA= \/3I'(1/3)%/(8#°), andB is a numerical constant.

asymptotic expansion givei$Y=47/.3. By rewriting ¢

The diverging terms of order 4/disappear from Eq.32) to

and g in terms of renormalized quantities and developingEg. (41) as expected. As we look for the first correction to
first in powers ofgg then in e the equation of state can the mean-field result¥V=|og//g, we can write ¥

finally be written as

=(|orl/g)(1+cg3) and develop Eq(41) to g2 order to
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determine the coefficient. Assuming thajog|—0 at criti- IV. ANALYSIS OF THE FERMIONIC CASE
cality, one finally finds A. Heuristic approach
P JL(1/3) In contrast to the bosonic case, there is no firmly estab-
V=C,|og|" >, Cszﬁ' (42)  lished easy-to-use field-theoretic formalism to cope with the
mNE

fermionic constraint. It was recently shown how to incorpo-

This nicel p th | . f th d rate the exclusion constraint in a field-theory of a bosonic
IS nicely confirms the one-loop expansion ot the or ertype[l:’a]. But the resulting action has exponential interaction
parameter exponefit=1—3¢/8 and further yield the ampli-

; terms that are difficult to exploit analytically, except by ex-
tude to leading: order. panding them. This would lead us back to analysis of the
bosonic theory, dropping terms potentially relevant in dimen-

E. Finite-size scaling analysis sion 1. It is interesting to note that the action that incorpo-
It is instructive to investigate some finite-size propertiestates the hardcore constraint does not have the time-reversal
of the transition and to compare with what one would obtainSymmetry that the bosonic action possesses. _
for a usual DP process. In particular we would like to know, AN alternative approach suggested by C&it#§] consists

in a finite-size system, what the lifetime of the active state isin Working directly in dimension 1 and in observing that the
We follow the route outlined by Janssenal.[12]. We split ~ World lines of hardcore bosons behave as those of free fer-

the order parameter fielgt(q,t) into mions, at least between branching and annihilation events.

This is equivalent to studying the effect of branching at the
P(q,t) =¥ (t)+ ¢(q,t), (43 annihilation fixed point that correspondis the present in-

homogenous case as welb an infinite rate annihilation of

where ¥ (t) = ¢(gq=0,t), which defines¢(q,t). With peri-  particles meeting at the origin. We briefly recall the steps

odic boundary conditions, the Fourier modes age leading to a fermionic field theory accounting for the hard-

=(2m/L)(ny, ... Ng), n,e{0,... L—1}. The next step core exclusion.

is to rewrite the actior§ «, ] in terms of the newly intro-

duced fields. Our interest goes to the homogeneous mode in B. From the master equation to a quantum spin chain

the steady-state, so that by integrating out g0 modes Let n={n,} denote a general configuration of the local

we obtain an effective actioBey for the =0 modeW(t) ccupation numbers; (n;=0 or 1). The time evolution of

only. Of course, the latter procedure can only be performegy,, probabilityP(n:t) to find the system in the microstate

within the framework of a(renormalized perturbation ex- at timet evolves according to a master equation
pansion. The one-loop result reads

dP(n;t)
- o - =2 [W(n'—n)P(n’;t)=W(n—n")P(n;t)],
Seff[\If,\If]=f At LYYW + ogyp¥ + grVP W (¥ — ). dt n’
(44 (48

o _ ) whereW(n' —n)dt is the probability that the system goes
We prefer working in rescaled fields and variables, from staten’ to staten betweent and t+dt. Setting

| 342 |P(t))==,P(n;t)|n), the master equation is equivalent to

t= 5 7 W(t)=L"%d (7). (45 an evolution equation
® Aoy
The actionS, for ® is equivalent to the probability density dt H|®), (49
function P(®,7) of & satisfying the following Fokker- A
Planck equation: where the stochastic evolution operatérencodes the mi-
croscopic dynamics defining the model. The reader is re-

d 5 92 ferred to Schtz [15] for a review of the properties of such
9,P(0,7)= = [(y®+D?)P]+ E((D P),  (46)  operators. When a site has occupation nurmhene defines
the spin variables=2n—1, which is the eigenvalue of the

operatore?=2n—1. In the spin language, the evolution op-
erator usually takes the form of conventional quantum spin
chain Hamiltonian in an externdpossibly complex field.

For reactions involving three particles or more, three-spin
terms are present.

with y=(or/gr)L¥2. It is well known[12] that the smallest
nonzero eigenvalue of Eg46) is

_ .2
w~|y|%e" 7", (47)

which decays ag " asL . Hence the lifetime of the

active state goes to infinity in the thermodynamic limit. This
parallels exactly what occurs in a usual directed percolation Spin operators are known to be convenient to describe
process. This adds an important feature that our model sharéardcore bosons. The Jordan-Wigner transformation allows
with a common absorbing-state transition. one to express physical observables in terms of fermionic

C. From the spin chain to a fermionic theory

046104-6



SIMPLE ABSORBING-STATE TRANSITION PHYSICAL REVIEW E65 046104

operators. It can be shown that a physical observable is otexists none, but it could also be an indication that the expla-
tained by determining the vacuum expectation value of prodnation lies in some “mathematical property” yet to identify,
ucts of fermionic Operators We|ghted by a famﬂ"t, where as was the case in BARWE. One could show that the time-
reversal symmetrf12) satisfied by the actions describing
A :ez ai‘ﬂefz o (50) bosonic particles of DP and of our model does not extend to
: : fermionic particles. Could it play the role of such a “math-
- . ematical property?”
HenceH is obtained fromH by substituting ther® by 0" We would like to conclude on the difficulty of performing
—o~ +1-2n. At this stage, the spin operators are replacechumerical simulations of our process. Besides the usual dif-
by their fermionic expressions. In order to build up a fieldficulties associated to absorbing states and to phase transi-
theory, one simply replacegfter normal orderingthe fer-  tions, our system possesses a relaxation time that diverges
mionic operators by their Grassmann eigenvaliles actu- much more sharply withh—\; than in an ordinary
ally works for interaction terms made of an even number ofabsorbing-state transitiofin mean field it diverges as\(
fermionic operators, and odd powers must be dealt with—\.) 2 as opposed toN—\.) ! for an ordinary DP pro-
greater carg¢16]). The average density is the average valuecesg. However, a numerical simulation would be necessary
of the Grassmann field associated to the annihilation operatdo investigate the boson vs fermion issue. Indeed a finite-size
weighted by exptS), whereSis the fermionic action that scaling analysis gives access to the r@ie [using the scal-

depends on a pair of Grassmann fields. ing ansatz¥ (L,0)=L"#"*FLYo)]. This is precisely the
quantity that we predict exactly in the bosonic cag i
D. Action and scaling analysis =1/2) and that could be compared with mean field or fermi-

onic value B/v=1). A numerical analysis investigating

In the fermionic case, only one particle is allowed to Sitihose issues should be our next step.

on sitex=0; if an offspring is produced, it is placed on the

neighboring site. Similarly, coagulation occurs between a

particle located at=0 and one of its two nearest neighbors.

Power counting performed on the action The authors have benefited from extensive discussions
with Henk Hilhorst.
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S[E,lﬂ]:f dxdt{¢{di+Dod(x)~Dagly APPENDIX

+Dga(X) i dyih— axip)} (51) In this appendix we would like to show how the original
Lo 12 o reaction-diffusion process can be described in terms of a
now indicates thag~a™* and hence is irrelevant. Mean- non-Markovian single-site process taking place at the origin
field applies, hence im=1, g=1. Let us stress that We f the |attice. We shall integrate out the degrees of freedom
have deliberately omitted nonlocal factors in the ferm'on'cdescribing pure diffusion on the sités-0 and find the re-
action. Following the analysis presented in REf4], we g ting effective interaction for the number of particles at the
know that they do not enter the scaling analysis though theyyigin at timet. Our motivations for doing this are twofold.

will introduce nontrivial symmetry factors. First, since interactions are taking place at the origin only, it
should prove more illuminating to have a process defined
V. DISCUSSION AND PROSPECTS there in which only the free diffusion away from the origin

. as been incorporated as an effective interaction. Second, the
We have shown that the hardcore constraint may be o? P

ol . th . lity fat tion t enormalization group and scaling analyses rely on the exis-
crucial importance on the universality class ot a transtlion e nee of 5 continuous limit. However, due to the very singu-
an absorbing state occurring in a nonequilibrium steady stat

S - . far role played by the origin, it could be that special renor-
This is all the more surprising as the density approaches Z€Qalization has to be done for the field defined at the origin.

¥n that respect, working directly with an interacting theory
defined on the origin only will answer those worries.

For notational simplicity, we restrict the presentation to
e one-dimensional case: the particles diffuse on a lattice of

of having several particles piled up on a gite the bosonic

version) must be extremely low. Although it is a well-
understood fact that biased diffusion of hardcore particle%
exhibits a scaling behavigdescribed by the noisy Burgers unit spacing with sites at-L,—L+1, ... L. We adopt re-

equation quite different from the purely diffusive bosonic flecting boundary conditions and detas the diffusion con-

counterpart, in the absence of any drift, it is hard to build UPstant. We consider an assembly of independently diffusing
an intuitive picture that would fit into our findings. Similarly,

o . . - . articles. The action describing their dynamics is
it is well known that at a finite density, the typical displace- P 9 y
ment of ataggedhardcore particle increases with timet$, L-1

L
as opposed to the Brownian motioH satisfied by bosonic s:f dt[ > $ioidi—D Y, bi(bi_1—2hi+ disq)
particles. Yet, as far as collective behavior is concerned we i=1 =2

know of very few properties specific to either family of par- L
ticles (remember particles are indistinguishgbkedmittedly, _ D$1(¢o—2¢1+ by)— DEL(QSLfl_ b)) E aﬁtd"
not being able to coin a heuristic picture does not mean there == T
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—L+1

_DizZz Gi(bi_1—2¢i+bii1)—Di(do—2¢ 1

+¢_2)—Dd (L +1—
—2¢ot ¢1).

Dpo( -1
(A1)

b-1) bodibo—

We want to trace out all the fieIdsE(t),d:i(t)}i%O describ-
ing diffusion away from the origin. We split the action in the
form

S=S,+S;+S, +S, +S,, (A2)
with  So=[dtdodido+2ddodo, Sy =~ [dtD(d.160
+ ¢od~1), and

L L-1
S§=f di| 3, $iihi=D 2, bi(di-1=2¢i+ dia)
_Dal(_2¢1+¢2)_D$L(¢L71_¢L)
L
=f di| 2, piepi— D.,zl ¢A.J¢,}, (A3)
with A;; anL XL symmetric matrix,
-2 1
B 1 -2 1
A= 1 -2 1 (A4)
1 -1

The analog foi=—L, ...
unitary matrixU such that

,—1 definesS, . There exists a

P

-1
4 Ugi AijUjq

/:5qq/)\q. (AS)

1
We defineyq(t) ==Ujqb; and ¢y(t)==;Ujq¢;. ThenSy

=fthqu((9t—D)\q)¢,q. Introducing the Fourier trans-
forms

Pyl w)= f dtetyy(t),  Yqlw)= f dtel“lyy (1),
(A6)

we find

da)

277

+

q( w)(—io— D)\q) ¢q(w)

Aq=—2(1—cosq). (A7)

We also expresS; in terms Ofa,l// and we perform explic-

itly the integration over those fields, witih,, ¢, as param-
eters. We obtain the total effective action

PHYSICAL REVIEW E 65 046104

Seﬁ[EOad’O]:f dt| Podibo+ 2D doo

t S—
+2D2f_ dt’% UZ,eP (1) (L) |
(A8)

Solving the diagonalization problem yieldsU,,
=+/(2/L)sing with g solution of tarLq=cotqg/2, 0<q<m
(there are exactly solutiong. We now turn to the interpre-
tation of the memory kernel appearing in the effective action.
The Green function associated with the mathixs

Gij(1)= E UjqUgteP !, (A9)

which is the probability to be at siteat timet given the
walker started at siteat time 0. The quantitp G44(t) is the
flow of probability from 1 to O at timg, for a walker that
started from site 1 at time 0. Since this flow is irreversible,
DGq4(t) is also the probability that the first visit to O takes
place exactly at time given the walker started from site 1 at
time 0. Standard random walk theory allows to find the
Laplace transform ob G4(t),

p 1 1

DGll(p) 2D 2D G op)’

(A10)

with Go(p)= /7 .(dg/27)[1/p+2D(1—cosq)] the Laplace
transform of the return to the origin probability of a simple
random walk. Returning to the time domain, one finds that

_ t _
Seff[¢o,¢o]=J dtf_wdt’l“(t—t’)%(t)%(t’),
(Al11)

with the Laplace transform of the memory kernel

(A12)

We are thus left with the study of the zero-dimensional
time dependent proceg&t) whose dynamics is encoded in
the following action:

5[$o,¢o]=f dtdt’ ()@ (t—t")T(t,t") (t")
+ reaction terms. (A13)

It is well known that in the continuous lim{now generaliz-
ing to d<2 space dimensions

gl

(4 )d/2 P

d
1_ —_
(A14)

Go(p)= p—0,
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and we shall henceforth adopt this limiting form, supple-and

mented by a high-frequency cutdff. This is equivalent to

using the memory kernel dg e 2I'(1—d/2)3
—=g ——892K Q—s/Z Ky=——~~" "=

dl 4 d ' d (47)(30+2)72°

F(Lt’):@(t—t’)m (A15) (A18)

with a short time cutoff Q=% The quantity Go(p)/ sze Iattiarlzequation possesses a sjngle ;tgble fixed point
[1+ aGo(p)] plays the role of the propagator in this zero- 9 KgQd™#*=¢/32. The correlation time critical exponent
dimensional process. We now perform the power-countinghus has the expression
procedures in units of the frequency cut6¥t
— -1_ d *2 9—9/2_ d e — 1 €
¢(t)~¢(t)~ﬂd/4, g,\,Qlf?,dm_ (A16) (zv) —1—5—49 Ky —1—§—§—§+ ﬂ
We shall now perform a Wilson-type renormalization proce- (A19)
dure. We trace out all degrees of freed@m (w) with fre-
quency in the intervall=|w|=Q/b, whereb>1 is a re-
scaling factor to be taken asymptotically close to 1. Of N | t effective int tion i ted: i i
course the tracing out of those high-frequency degrees qf o relevant eflective Interaction 1S generated. in particu-
. ; ar, the one-loop graph renormalizing the propagator is pro-
freedom can only be performed perturbatively. The first non-_ "’ .
o N RO . : portional to
trivial contributions give rise to effective couplings between
the ¢ fields (defined for frequencielo|</b) exactly of
the same form as the already present ones. Thus the theory
defined at the coarse-grained sc@lé has newb-dependent
couplingsa(b) andg(b). The recursion relation for the ef-

One recovers in an elegant way the dimensional regulariza-
tion results for the critical exponents.

dw
f Z¢<(_w)¢<(w)

fective couplings defined at scate=€' are fd_vv‘ Go(w) Go(w—w) | (A20)
, 271+ 0Go(W) 1+ 0Go(w—w)|’
2I'| 1 9) . . . .
do B d ) Lo 2] 5 Expanding the terms in the integral in powerseoproduces
dar - 1_5_49 Kal2 o+ (4r)0+1 gca”, only integer powers ofw, which correspond to irrelevant
interactions. This establishes the absence of field renormal-
e=4-3d (A17) ization in this problem.
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